首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
航空   12篇
航天技术   9篇
航天   8篇
  2021年   1篇
  2018年   2篇
  2017年   1篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2004年   1篇
  2002年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
11.
The South Atlantic Anomaly (SAA) has been monitored for 19 years using the Along Track Scanning Radiometer (ATSR) series of instruments onboard the ERS-1, ERS-2 and ENVISAT ESA satellites. The time evolution of the night-time particle induced noise in the short wavelength infrared (SWIR, 1.6 μm) and visible (VIS, 0.55 μm) channels of the ATSR instrument series have been analysed. The monthly location and extension of the SAA are inferred by fitting a two-dimensional, elliptical Gaussian function to the coordinates of the night-time hot spots detected over the SAA region. The location of the centre of the SAA is found to drift westwards with an average drift rate of about 0.24 deg/year and northward with an average drift rate of about 0.12 deg/year. Irregularities are found where the drift speed is inverted and the SAA moves eastward and southward. Results indicate that, as expected, the retrieved values of SAA’s strength and extension are anti-correlated with the solar activity expressed by the solar flux at 10.7 cm (F10.7). Finally, the peak-to-peak amplitude of the seasonal variation of the SAA strength, estimated from monthly VIS data, is found to be 30% of the average value with the annual to semiannual amplitude ratio of 1.38.  相似文献   
12.
13.
The paper reports research into the transfer of technology typically used in the construction of scientific satellites. Four case studies are analyzed to clarify some basic mechanisms of the transfer of space technology to the industrial system. The paper finds that the technologies analyzed in the construction of satellites for the most part stem from the integration of technical processes already known in various industrial sectors; the use of these processes in space involves their substantial strengthening and upgrading in terms of performance; and this upgrading permits them to return to industrial sectors that use the technological advances acquired for coping with complex problems in the space sector. This research has helped validate some of the determinants of technology transfer already noted in the literature, while increasing the number and content of these. Useful indications emerge for policy makers and agents involved in technology transfer programs.  相似文献   
14.
The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) comprises the hardware and accompanying science investigation on the New Horizons spacecraft to measure pick-up ions from Pluto’s outgassing atmosphere. To the extent that Pluto retains its characteristics similar to those of a “heavy comet” as detected in stellar occultations since the early 1980s, these measurements will characterize the neutral atmosphere of Pluto while providing a consistency check on the atmospheric escape rate at the encounter epoch with that deduced from the atmospheric structure at lower altitudes by the ALICE, REX, and SWAP experiments on New Horizons. In addition, PEPSSI will characterize any extended ionosphere and solar wind interaction while also characterizing the energetic particle environment of Pluto, Charon, and their associated system. First proposed for development for the Pluto Express mission in September 1993, what became the PEPSSI instrument went through a number of development stages to meet the requirements of such an instrument for a mission to Pluto while minimizing the required spacecraft resources. The PEPSSI instrument provides for measurements of ions (with compositional information) and electrons from 10 s of keV to ~1 MeV in a 160°×12° fan-shaped beam in six sectors for 1.5 kg and ~2.5 W.  相似文献   
15.
In response to the scientific interest in Jupiter's Galilean moons, NASA and ESA have plans to send orbiting missions to Europa and Ganymede, respectively. The inter-moon transfers of the Jovian system offer obvious advantages in terms of scientific return, but are also challenging to design and optimize due in part to the large, often chaotic, sensitivities associated with repeated close encounters of the planetary moons. The approach outlined in this paper confronts this shortcoming by exploiting the multi-body dynamics with a patched three-body model to enable multiple “resonant-hopping” gravity assists. Initial conditions of unstable resonant orbits are pre-computed and provide starting points for the elusive initial guess associated with the highly nonlinear optimization problem. The core of the optimization algorithm relies on a fast and robust multiple-shooting technique to provide better controllability and reduce the sensitivities associated with the close approach trajectories. The complexity of the optimization problem is also reduced with the help of the Tisserand–Poincaré (T–P) graph that provides a simple way to target trajectories in the patched three-body problem. Preliminary numerical results of inter-moon transfers in the Jovian system are presented. For example, using only 59 m/s and 158 days, a spacecraft can transfer between a close resonant orbit of Ganymede and a close resonant orbit of Europa.  相似文献   
16.
ROLIS (Rosetta Lander Imaging System) is one of the two imaging systems carried by Rosetta’s Lander Philae, successfully launched to comet 67P/ Churyumov-Gerasimenko in March 2004. Consisting of a highly-miniaturized CCD camera, ROLIS will operate as a descent imager, acquiring imagery of the landing site with increasing spatial resolution. After touchdown ROLIS will focus at an object distance of 30 cm, taking pictures of the comet’s surface below the Lander. Multispectral imaging is achieved through an illumination device consisting of four arrays of monochromatic light emitting diodes working in the 470, 530, 640 and 870 nm spectral bands. The drill sample sites, as well as the Alpha X-Ray Spectrometer (APXS) target locations will be imaged to provide context for the measurements performed by the in situ analyzers. After the drilling operation, the borehole will be inspected to study its morphology and to search for stratification. Taking advantage of the Lander’s rotation capability, stereo image pairs will be acquired, which will facilitate the mapping and identification of surface structures.  相似文献   
17.
It has been speculated that the composition of the exosphere is related to the composition of Mercury’s crustal materials. If this relationship is true, then inferences regarding the bulk chemistry of the planet might be made from a thorough exospheric study. The most vexing of all unsolved problems is the uncertainty in the source of each component. Historically, it has been believed that H and He come primarily from the solar wind (Goldstein, B.E., et al. in J. Geophys. Res. 86:5485–5499, 1981), Na and K come from volatilized materials partitioned between Mercury’s crust and meteoritic impactors (Hunten, D.M., et al. in Mercury, pp. 562–612, 1988; Morgan, T.H., et al. in Icarus 74:156–170, 1988; Killen, R.M., et al. in Icarus 171:1–19, 2004b). The processes that eject atoms and molecules into the exosphere of Mercury are generally considered to be thermal vaporization, photon-stimulated desorption (PSD), impact vaporization, and ion sputtering. Each of these processes has its own temporal and spatial dependence. The exosphere is strongly influenced by Mercury’s highly elliptical orbit and rapid orbital speed. As a consequence the surface undergoes large fluctuations in temperature and experiences differences of insolation with longitude. Because there is no inclination of the orbital axis, there are regions at extreme northern and southern latitudes that are never exposed to direct sunlight. These cold regions may serve as traps for exospheric constituents or for material that is brought in by exogenic sources such as comets, interplanetary dust, or solar wind, etc. The source rates are dependent not only on temperature and composition of the surface, but also on such factors as porosity, mineralogy, and space weathering. They are not independent of each other. For instance, ion impact may create crystal defects which enhance diffusion of atoms through the grain, and in turn enhance the efficiency of PSD. The impact flux and the size distribution of impactors affects regolith turnover rates (gardening) and the depth dependence of vaporization rates. Gardening serves both as a sink for material and as a source for fresh material. This is extremely important in bounding the rates of the other processes. Space weathering effects, such as the creation of needle-like structures in the regolith, will limit the ejection of atoms by such processes as PSD and ion-sputtering. Therefore, the use of laboratory rates in estimates of exospheric source rates can be helpful but also are often inaccurate if not modified appropriately. Porosity effects may reduce yields by a factor of three (Cassidy, T.A., and Johnson, R.E. in Icarus 176:499–507, 2005). The loss of all atomic species from Mercury’s exosphere other than H and He must be by non-thermal escape. The relative rates of photo-ionization, loss of photo-ions to the solar wind, entrainment of ions in the magnetosphere and direct impact of photo-ions to the surface are an area of active research. These source and loss processes will be discussed in this chapter.  相似文献   
18.
The LISA Pathfinder Drift Mode is an experimental mode proposed for the LISA Pathfinder drag free space mission. The Drift Mode’s specificity is to switch off a possibly noisy actuator periodically in order to minimize the actuation noise. The experiment delivers a measurement that includes data segments virtually free of any actuation force noise. The corresponding acceleration data is then used to estimate the experiment disturbance spectrum, using a calibrating and gap-filling algorithm. This article focuses on two points to demonstrate the feasibility and interest of such an experiment: a first part is dedicated to experiment control and dynamics, whereas the second part explains how to solve the challenging problem posed by the data analysis.  相似文献   
19.
Until recently, only about 10 % of the total intracluster gas volume had been studied with high accuracy, leaving a vast region essentially unexplored. This is now changing and a wide area of hot gas physics and chemistry awaits discovery in galaxy cluster outskirts. Also, robust large-scale total mass profiles and maps are within reach. First observational and theoretical results in this emerging field have been achieved in recent years with sometimes surprising findings. Here, we summarize and illustrate the relevant underlying physical and chemical processes and review the recent progress in X-ray, Sunyaev–Zel’dovich, and weak gravitational lensing observations of cluster outskirts, including also brief discussions of technical challenges and possible future improvements.  相似文献   
20.
Despite the numerous modeling efforts of the past, our knowledge on the radiation-induced physical and chemical processes in Europa’s tenuous atmosphere and on the exchange of material between the moon’s surface and Jupiter’s magnetosphere remains limited. In lack of an adequate number of in situ observations, the existence of a wide variety of models based on different scenarios and considerations has resulted in a fragmentary understanding of the interactions of the magnetospheric ion population with both the moon’s icy surface and neutral gas envelope. Models show large discrepancy in the source and loss rates of the different constituents as well as in the determination of the spatial distribution of the atmosphere and its variation with time. The existence of several models based on very different approaches highlights the need of a detailed comparison among them with the final goal of developing a unified model of Europa’s tenuous atmosphere. The availability to the science community of such a model could be of particular interest in view of the planning of the future mission observations (e.g., ESA’s JUpiter ICy moons Explorer (JUICE) mission, and NASA’s Europa Clipper mission). We review the existing models of Europa’s tenuous atmosphere and discuss each of their derived characteristics of the neutral environment. We also discuss discrepancies among different models and the assumptions of the plasma environment in the vicinity of Europa. A summary of the existing observations of both the neutral and the plasma environments at Europa is also presented. The characteristics of a global unified model of the tenuous atmosphere are, then, discussed. Finally, we identify needed future experimental work in laboratories and propose some suitable observation strategies for upcoming missions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号